slideshow 3

Cohomology in algebra, geometry, physicsand statistics

Almost hypercomplex/quaternionic skew-Hermitian structures and their intrinsic torsion

Speaker’s name: 
Ioannis Chrysikos
Speaker’s affiliation: 
University of Hradec Kralove

 

Place: 
ZOOM meeting CANCELLED because of speaker's illness
Date: 
Wednesday, 23. February 2022 - 13:30 to 14:30
Abstract: 
We discuss the  differential geometry of  4n-dimensional manifolds admitting a SO*(2n)-structure, or a SO*(2n)Sp(1)-structure, where SO*(2n) denotes the quaternionic real form of SO(2n, C).  Such G-structures form the symplectic analog of the well-known hypercomplex/quaternionic Hermitian structures, and hence we cal them  hypercomplex / quaternionic skew-Hermitian structures, respectively.  We will describe the basic data encoding such geometric structures, their intrinsic torsion, related 1st-order integrability conditions and some classification examples, if time permitted.   This talk is based on  joint works with J. Gregorovič (UHK) and H. Winther (Masaryk)

--------------------------------------------------------------------------------------------------------------------------------------------------
We open  ZOOM  at  13.15  for    coffee  and   close  at  15.00.
 
Join Zoom Meeting
https://cesnet.zoom.us/j/99598413922?pwd=YXNFbk50aVhleXhWSGtISFViLytRUT09
 
Meeting ID: 995 9841 3922
Passcode: Galois