slideshow 3

Cohomology in algebra, geometry, physicsand statistics

Vertex algebra cohomology of foliations on Riemann surfaces

Speaker’s name: 
Alexander Zuevsky
Speaker’s affiliation: 
Institute of Mathematics, Czech Academy of Sciences

 

Place: 
ZOOM meeting + the blue lecture room in the rear building, Zitna 25
Date: 
Wednesday, 17. June 2020 - 11:30 to 12:30
Abstract: 
In the transversal basis formalism, we construct a vertex algebra
cochain complex, show its independence on coordinates and choice of basis, and
define the vertex algebra cohomology for a foliation on a smooth complex curve.
The first cohomologies are determined in terms of connections and classes of extensions of
the vertex algebra. We will introduce the cohomological class, consider the main example of $Re \omega=0$
foliation on a Riemann surface, and make a connection with considerations of other codimension one examples.

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Zoom Meeting  and   the blue lecture   room  in the rear building  at  Zitna 25  are open at  11 AM

https://cesnet.zoom.us/j/99598413922?pwd=Ym4velNHckh2TlNxK2R2SzRpVXRhdz09

Meeting ID: 995 9841 3922

Password: 097923