Consider a smooth manifold with a Riemannian metric satisfying some sort of curvature constraint like, for example, positive scalar curvature, non-negative Ricci or negative sectional curvature, being Einstein, Kähler, Sasaki, etc. A natural question to study is then what the space of all such metrics does look like. Moreover, one can also pose this question for corresponding moduli spaces of metrics, i.e., quotients of the former by (suitable subgroups of) the diffeomorphism group of the manifold, acting by pulling back metrics.
These spaces are customarily equipped with the topology of smooth convergence on compact subsets and the quotient topology, respectively, and their topological properties then provide the right means to measure 'how many'... more
These spaces are customarily equipped with the topology of smooth convergence on compact subsets and the quotient topology, respectively, and their topological properties then provide the right means to measure 'how many'... more